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Overview

In this supplementary material we include the following sections:

1. High-resolution results for arbitrary surface texture editing
2. High-resolution results for document texture editing
3. Video with additional results
4. More qualitative comparison with DewarpNet [4] on synthetic evaluation set
5. Qualitative comparison with [4] for different types of real documents
6. Qualitative comparison with [16] on their test-set
7. Usefulness of L,
8. Details of weighting function used in L,
9. Training details of the UV prior network
10. Initializing S and F,
11. Unwarping and texture editing details
12. Pre-processing details for the real scenes
13. Detailed ablation figure
14. Limitations
15. Example of a failure case
16. Training time

1 High-resolution results for arbitrary surface texture
editing

In Fig. and [3] we show the examples of editing arbitrary surface texture.

Furthermore, in Fig. we show examples of face [I0] texture unwrapping

and editing. These examples show that our learned F, prior and the proposed

method works beyond documents as long as the isometry assumption is not
strongly violated.

2 High-resolution results for document texture editing

In Fig. [} [7] we show the examples of texture editing in higher resolution.
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Some other views of the edited texture

Fig. 1. Example of texture edited images rendered from different views. Note the per-
spective changes and deformation on the edited texture due to the surface. The input
foreground mask is shown using dashed yellow polygon.
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Some other views of the edited texture

Fig. 2. Example of texture edited images rendered from different views. Note the per-
spective changes and deformation on the edited texture due to the surface. The input
foreground mask is shown using dashed yellow polygon.
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Frontal and side views of the edited texture

Some other views of the edited texture

Fig. 3. Example of texture edited images rendered from different views. Note the per-

spective changes and deformation on the edited texture due to the surface. The input
foreground mask is shown using dashed yellow polygon
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Unwrapped texture Edited texture

Different views of the edited texture

Fig. 4. Example of texture edited faces [I0] rendered from different views. Note the
perspective changes and deformation on the edited texture due to the surface. The
input foreground mask is shown using dashed yellow polygon.
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Different views of the edited texture

Fig. 5. Example of texture edited faces [10] rendered from different views. Note the
perspective changes and deformation on the edited texture due to the surface. The
input foreground mask is shown using dashed yellow polygon.
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Fig. 6. Example of texture edited images from different views. Note the perspective
changes and deformation on the edited texture due to the complex shape of the paper.
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Input Unwarped Edited Texture
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Fig. 7. Example of texture edited images from different views. Note the perspective
changes and deformation on the edited texture due to the complex shape of the paper.
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3 Video with additional results

We include a video (3394-supp.mp4) to demonstrate the quality of our texture
editing results. It includes continuous view of the edited textures from different
camera perspectives.

4 More qualitative comparison with DewarpNet [4] on
synthetic evaluation set

In Fig. [§] [9] we show more qualitative comparison with DewarpNet [4] on un-
warping frontal view of a document. For a better illustrative comparison we
also show qualitative results of the 4 best (lowest LD) unwarped views using [4]
in Figll0] and Clearly in all of the cases we achieve better or comparative
results. Furthermore, we can see that it is hard to predict which view will per-
form best for [4], and results vary significantly even if the views are reasonably
frontal. Comparatively, being a multi-view method, our approach produces more
consistent unwarping across all views.

5 Qualitative comparison with [4] for different types of
real documents

In Fig. and [15] we show qualitative unwarping result for four different
type of documents, e.g. book, receipt, flyer, and magazine. In all the views our
method shows consistent and good quality unwarping results.

6 Qualitative comparison with [16]

In Fig. [16] we provide a qualitative comparison with 5 publicly available
images from [16]. The results are competitive and often produce better unwarp-
ing. Quantitative numbers couldn’t be reported because the high-res/original
unwarped results are not publicly available.

7 Usefulness of L,,

In section 3.3 of the main submission, we define L,, (Eq. 8) to prevent non-
uniform mapping between the 3D and the UV domain. Specifically, we constrain
the output of Fy, to be ~ U(0,1) using L,,. Without L,,, F,, is prone to
produce a mapping ~ U(a,b) where a > 0 or b < 1. Consequently, F, also learns
an incorrect mapping between the texture and the 3D domain. As a result, the
unwarped texture gets stretched or squeezed. We demonstrate two such examples
in Fig.
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DewarpNet - Proposed

Fig. 8. Comparison of frontal view unwarping: left is DewarpNet and right is our
approach. Our results are clearly better with straighter lines. Discriminative regions
are highlighted with red dashed rectangles.
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DewarpNet Proposed

Fig. 9. Comparison of frontal view unwarping: left is DewarpNet and right is our
approach. Our results are clearly better with straighter lines. Discriminative regions
are highlighted with red dashed rectangles.
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Fig. 10. 4 best results (sorted in ascending order from top to bottom according to
LD score [lower better]) of (b) DewarpNet compared to (c¢) proposed unwarping for a
specific scene. For all the views proposed unwarping shows better and consistent visual
results than DewarpNet. (a) is the input. Blue dashed boxes denote the discriminative

areas in the unwarped results.
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Fig.11. 4 best results (sorted in ascending order from top to bottom according to
LD score [lower better]) of (b) DewarpNet compared to (¢) proposed unwarping for a
specific scene. In all the views proposed unwarping shows better and consistent visual
results than DewarpNet. (a) is the input. Blue dashed boxes denote the discriminative
areas in the unwarped results.
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Fig. 12. Unwarping results on different views of a book. Top row shows the inputs. (a)
Proposed, (b) DewarpNet. Our method generates good quality unwarping results with
straighter text-lines.
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Fig. 13. Unwarping results on different views of a receipt. Top row shows the inputs.
(a) Proposed, (b) DewarpNet. Our method generates good quality unwarping results

with straighter text-lines.
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Fig. 14. Unwarping results on different views of a flyer. Top row shows the inputs. (a)
Proposed, (b) DewarpNet. Our method generates good quality unwarping results with
straighter text-lines.
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Fig. 15. Unwarping results on different views of a magazine page. Top row shows the
inputs. (a) Proposed, (b) DewarpNet. Our method generates good quality unwarping
results with straighter text-lines.
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Fig. 16. Comparison with [16]: We show competitive unwarping results compared to
a prior multi-view unwarping approach. A quantitative comparison could not be per-
formed because high-res/original unwarped results are not publicly available.
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Fig. 17. Comparison with [16]: We show competitive unwarping results compared to
a prior multi-view unwarping approach. A quantitative comparison could not be per-
formed because high-res/original unwarped results are not publicly available. The ex-
ample with the dashed outline shows a failure case of our method: 'Real 6’(see ﬁgure.
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Fig. 18. Usefulness of L,,: Examples trained without L,, show undesired stretches
and squeezes in the unwarped texture.

8 Details of weighting function used in L,

We define L, in Eq. 9 of the main submission:
1 PO
L, = W Z wp(Zp — 22)2 (1)
m pePin

where P € P;n are the pixels for which ray-surface intersection is found and
M, = 1. M,,, denote the pixel in the document mask M. M is a binary image,
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where M,, = 1 denotes the pixel p is within the document region. w, is a pre-
calculated per-pixel weight based on the document mask (M). 2, is the ray-
surface intersection point obtained by sphere tracing, and 2;) is the ray-surface
intersection point predicted by F,. To derive the 2D texture map of a 3D surface,
constraint optimization-based techniques use user-defined keypoints [14]. The
keypoints allow to constrain the 2D to 3D mapping estimation. For documents,
we can consider the set of boundary points as the keypoints. From the application
perspective, it helps to accurately map the texture boundary to the learned
surface boundary (see Fig.[20(d) vs. (e) vs. (f)). Therefore, we employ a weighting
function, which assigns a higher weight to the 3D surface points at the boundary.
To implement W (p) we use a Euclidean distance transform [3] on the document
mask M, a binary image. Each pixel p, in the distance transformed image, D
encodes the distance to the nearest non-zero pixel. We first normalize and invert
the distance transformed image:

D — min(D)
max (D) — min(D)
Dinv — 1 — pnrorm

Dnorm

Here max(.) and min(.) denote the maximum and minimum value of D,, over all
the pixels. We assign the weights w,, as follows:

(2)

w — 10.0, if D;,"” > 0.8
e 0.3, otherwise

9 Training details of the UV prior network (F,)

We use an 8 layer MLP with a hidden layer of 512 units to learn the 3D to UV
mapping prior for document shapes. Each hidden layer has a sine [12] activation
function. The final layer uses a HardTanh activation function. To train Fuv we
utilize 10K UV mapped document meshes available in the Doc3D dataset. Each
mesh is first registered with a [—1, 1] uniform grid using a rigid transformation.
Then the meshes are rendered in Blender [I] to obtain the projected geometry
image (G) and the UV image (U). In G, each pixel p encodes the (X,Y,Z) co-
ordinates. In U, p encodes the corresponding UV coordinates. During training,
we randomly sample 10K pixels from each G as input to F,., and use the cor-
responding pixels in U as the ground-truth. We optimize the L1 loss for 150
epochs between the predicted and the ground-truth UV coordinates using the
Adam optimizer with an initial learning rate of 10~°. The learning rate is halved
every 50 epochs. Following NeRF [9], we use a high dimensional Fourier mapping
(xx : R = R2?¥) to learn high-frequency details in the shape and the UV space.
We empirically set the number of Fourier bands, k£ = 10.
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10 [Initializing S and F,

We can start optimizing S from the standard IDR initialization (SDF of a
sphere). However, we notice that a better initialization can significantly improve
the training time as well as the quality of the shape reconstruction. For object-
specific applications like document unwarping, we found that initializing S with
a similar object can significantly reduce the training time and converge in half
the number of iterations (from 400K to 200K). Furthermore, we also found that
initializing F, to produce a planar point cloud can further reduce our training
convergence time to ~ 6 hours (80K-100K iterations). To this end, we pre-train
F, to produce a plane.

Pre-training of F,. To initialize F, such that it produces a planar point cloud,
we pre-train it by inputting points sampled from the UV space and predict the
point cloud with Z = 0. We employ Chamfer distance as a loss function between
ground truth and predicted 3D points. The ground truth points are sampled
from a plane. Additionally, we also apply the conformality constraints (defined
in section 3.2 of the main submission) for this pre-training step. The predicted
plane is bounded in [—0.5,0.5] in our implementation. This training step is quite
straightforward and converges in a few epochs.

11 Unwarping and texture editing details

To unwarp an input image, we determine a pixel at p = (x,y) in the input
image should be projected to (u,v) in the unwarped image. Here the unwarped
image refers to the texture space. The coordinates (u,v) and p are associated by
F, and 7: For a (u,v) coordinate, its corresponding point in 3D is obtained by
2, = Fy(u,v). Given the camera parameter 7, 2, is projected to p in the input
image. Thus, we can find its corresponding pixel in the input image for each pixel
in the unwarped image, which is all we need for unwarping. More specifically,
we use standard image projection and bilinear sampling [7] to implement the
unwarping step (see Fig. . The unwarping process can be realized as a grid
sampling step from the warped document image to a 2D rectangular uniform
grid. We can perform this sampling operation with a grid G € RH*Wx2) and a
bi-linear sampler. Here H and W denote the height and the width of the grid.
Each location in G encodes a pixel coordinate p of the input image.

At test time we sample F, in a uniform grid and project using the known
camera pose (7) to obtain the pixel coordinates. More specifically, sampling F,
in a uniform grid € [0,1] yields a uniform 2D grid R, € REXWx3) Each (u,v)
in R, encodes a 3D coordinate of the document surface. The R, representation
of the 3D shape is analogous to geometry images [6]. We obtain G from R, with
a standard projection:

p=KI[R[T| 2 (3)

Here, 7 is the homogeneous coordinate representation of z. K € R3*3 [R|T] €
R**4 denote the intrinsic and extrinsic parameters of the camera.
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Fig.19. Unwarping steps at test time: R. denotes the flattened geometry in the
texture space. Using the camera projection matrix for each view, we can obtain the
unwarping grid G. x denotes matrix multiplication. G can be used to sample [7] the
input image to get the unwarped image.

For the texture editing task, we first unwarp the image, then edit the texture,
and finally warp each edited pixel p back to the original position using the
predicted texture coordinates (t,). We can utilize the same bilinear sampling
operation as the unwarping step.

12 Pre-processing details for the real scenes

To train our proposed approach on the real scenes, we first obtain the camera
poses using COLMAP [I1]. Each scene in the real data has 5-25 views. We pre-
process the camera poses to a spherical domain following [8]. Since all the training
meshes used to train F,, are aligned with a [—1, 1] uniform grid, we apply a fixed
pre-computed rigid-transformation on the estimated 3D shape during the joint
training of S, Fy,, and F,. Specifically, we use a 6D rigid transformation, with
two parameters for rotation (axis-angle representation), three for translation,
and one for scale. We first train a vanilla IDR [I5] for 10K iterations. Then we
obtain a 3D point cloud representation of the surface by sphere-tracing the IDR
estimated SDF. Each point in the point cloud is a ray-surface intersection point.
Note that we do not need a very accurate geometry at this step. Therefore it is
not required to optimize the SDF until convergence. Now we obtain the desired
rigid transformation by optimizing the Chamfer distance between the obtained
surface point cloud and 10K points sampled from a 2D uniform regular grid
€ [-1,1]. We use SGD [13] with a learning rate of 0.001 and momentum 0.9 and
optimize for 10K iterations. Later, At every iteration during the joint training,
we apply the estimated rigid transformation on the sphere traced surface points
(2,) and use the transformed points as an input to the F,.
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11.01 9.83 6.59 2.71 GT

Fig. 20. Weighted L., and conformality effects. Top and middle row: (a) without con-
formality constraints, (b) with conformality constraints, (d) wp, = 1 in weighted L., (e)
weighted L. with w), calculated using Eq. |2} (c,f) ground-truth; bottom-row (left-to-
right): without conformality constraints and weighted L.; only with weighted L.; only
with conformality constraints; with conformality constraints and weighted L.; ground-
truth scan. Numbers in bottom denote the respective LD values.

13 Detailed ablation figure

We show a more detailed example of Fig. 8 of the main submission in Fig. [20]
with zoomed-in regions to demonstrate the effect of the different components of
Ly (Eq. 10 in the main paper).

14 Limitations

In the following, we discuss few potential limitations of our method:

— 3D reconstruction: The main limitation of our method follows from IDR [I5].
Inadequate number of images of a scene with large texture-less regions lead
to inferior 3D reconstruction which affects our unwarping result (see sec-
tion .

— Training time: The current approach takes ~6 hours to train a model and
separate models must be trained for every scene which makes it unsuitable for
real time applications. Runtime improvement will be addressed as a future
work (see section [16]).
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— Need for masks: We assume masks are available for every image. Although
masks are currently provided as manual inputs, we believe it’s fairly straight-
forward to train a foreground-background segmentation models to automate
the task.

15 Example of a failure case

Our method might fail due to imperfect 3D reconstruction. We show one such
case for a scene from [I6]. Mainly, there are two reasons for failure cases: first,
fewer views (only 5), and second, insufficient textured documents. IDR has in-
sufficient information to reconstruct the 3D shape. As a result of the poor 3D
shape, our texture parameterization network produces an inferior unwarping re-
sult. For illustration, we show the reconstructed 3D shape, warped texture, and
unwarped texture in Fig.

Input IDR rendering 3D shape Warped Texture Unwarped

Fig. 21. Shows a failure case of our method due to inferior 3D reconstruction. This
happened due to fewer available views for the scene and insufficient texture.

16 Training Time

Our proposed method for a scene can be trained in approximately 6 hours for
448 x 448 resolution images using a single Titan Xp GPU. The current training
time per scene is high compared to DewarpNet’s inference time which makes
it unsuitable for real-time applications. However, we would like to note that in
the current implementation sphere-tracing takes almost 50-60% of the running
time. With a faster version of the sphere-tracing we can readily achieve a faster
framework. Moreover, neural rendering is an active research field and there are
multiple other works that are focusing on improving the speed and generalization
abilities [52]. Therefore, a faster training can be achieved following any newer
or faster alternatives of IDR.
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