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In this supplementary material, we provide:

1. Discussion about the Local Distortion (LD) metric.

2. Discussion about the OCR metrics, CER and WER.

3. Details of the Global Stitching Variants.

4. Details of the Reconstruction Loss.

5. Training details.

6. Discussion about DocProj [4] trained on Doc3D.

We refer the main submission using section X.X.

1. Sensitivity of Local Distortion to Alignment
We would like highlight that the LD metric is sensitive to global misalignment. This is due to the fact that local shifts in

unwarped documents increase the SIFT flow magnitude, and consequently LD. We demonstrate this phenomenon in figures 1
and 2 where our piece-wise approach produces better unwarping but incurs a higher LD than DewarpNet [2]. The LD map
(middle column) shows the flow magnitude overlaid on the unwarped image. We can clearly notice high LD (denoted by
blue) even at the regions where the unwarping is clearly better. This occurs frequently enough such that we obtain a higher
mean LD 9.23 than that of DewarpNet [2], 8.98, which is reported in Table 1 of the main submission.

2. On the Relation Between OCR and Visual Quality
Though OCR and visual quality metrics such as LD, and MS-SSIM are typically correlated, there are occasionally exam-

ples, where the the OCR engine from Tesseract [5] can improve. We show such counter-intuitive examples in figure 3, where
CER values are high, even when visual quality has improved or similar. In figure 3, column 1 shows an example where the
proposed method obtains improved visual results (with straighter columns) than DewarpNet [2] but has a higher CER. We
showcase another counter-intuitive example due to the OCR engine in column 2, where we have similar unwarping results,
but a drastic 50% difference in CER. In terms of LD, our proposed method yields a lower score (5.30 to 4.27) in the first case
but a higher score (7.26 to 8.06) in the second case. We posit that with improved OCR algorithms, such as with more modern
deep learning based methods, the correlation between visual quality and downstream OCR accuracy will improve and our
results will be more pronounced.
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Figure 1. Comparison of Local Distortion (LD) Map of Proposed (top row middle) and DewarpNet (bottom row middle): (a) Unwarped
Image (follow the green cue lines for a better visual comparison), (b) Unwarped image overlaid with the LD magnitude map (blue: higher
LD). The corresponding LD value is shown at the bottom of each image, (c) Unwarped image (red channel) overlayed with the scan
(blue channel). Green boxed regions highlight the misalignment of the unwarping algorithms with respect to ground truth. The proposed
approach has better unwarping quality but global misalignment with the ground truth leads to 23% higher LD value.
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Figure 2. Comparison of Local Distortion (LD) Map of Proposed (top row middle) and DewarpNet (bottom row middle): (a) Unwarped
Image (follow the green cue lines for a better visual comparison), (b) Unwarped image overlayed with the LD magnitude map (blue:
higher LD). The corresponding LD value is shown at the bottom of each image, (c) Unwarped image (red channel) overlayed with the scan
(blue channel). Green boxed regions highlight the misalignment of the unwarping algorithms with respect to ground truth. The proposed
approach has better unwarping results (with straighter columns and better line alignment across two columns) but global misalignment
with the ground truth leads to 51% higher LD value.

3. Global Stitching Variants
We have experimented with three variants of the global texture stitching module. The main difference among the variants

is the long-skip connection [6] and the fusion block (F) used to fuse the local pyramid features extracted from G-FPN and
the global branch. Schematic diagrams of these variants are given in figure 4. In the baseline approach (Gl-C), the long skip
is an identity function on the global backward map (BM). The fusion block is implemented as channel-wise concatenation
of the global BM and the local G-FPN features. Gl-RF uses an identity long-skip connection of the global BM features
from the penultimate layer of Global Warp decoder. The Gl-RF fusion block is implemented as element-wise addition of the
local G-FPN and global BM features. On the other hand, Gl-R uses a shallow encoder to first encode the global BM for the
long-skip connection. The quantitative comparison of these variants is presented in Table 1. In terms of MS-SSIM on real
benchmark images and SSIM on synthetic validation images, the Gl-R variant performs the best, and is used in our proposed
network. Gl-RF variant shows better LD due to the global features directly used as long skip. This demonstrates the fact
that the unwarping network favors a global improvement rather than the local if stronger global features are provided. On
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Figure 3. Relation of OCR and Visual Quality: Column 1 and 3: (a) Proposed and (b) DewarpNet [2] with the respective CER. Column
2 and 4: Enlarged detected words for visual comparison (green boxes show spurious character recognition), Proposed (row 1 and 3) and
DewarpNet (row 2 and 4). Although, CER values are higher, unwarping results are better (column 1) or similar (column 3).

Stitching MS-SSIM ↑ LD ↓ Val SSIM ↑
Gl-C 0.4530 10.69 0.8176
Gl-R 0.4663 10.14 0.8266

Gl-RF 0.4628 10.07 0.8157

Table 1. Comparison of different variants of the global texture stitching modules. See section 3.

the contrary when we use a shallow encoder to encode the low-level information available at the global branch, the local
improvements become more prominent thus achieving better SSIM. There is an inherent trade-off between the local and
global unwarping which is unexploited in single branch global approaches [2].
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Figure 4. Different variants of global stitching network: (a) Gl-C, (b) Gl-R, (c) Gl-RF. Bi,j denote the local BMs, Gl Warp denotes the
global branch, Gl Feat. denotes the global features from the global decoder. Gl-E denotes a shallow convolution encoder for global BM.
The orange arrow denotes the long-skip connection.
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Figure 5. PUNet training with checkerboard images for reconstruction loss: Blue arrows denote training flow. Dashed arrows denote
unwarping the checkerboard image patches (Ici,j) using ground-truth local backward map (B′

i,j). Triangle denotes the PUNet loss function,
yellow rectangles enclose the variables used in loss calculation.



4. On Reconstruction Loss
In loss functions LP and LS of the main submission, we use an L2 reconstruction loss on the unwarped images D and D̂.

Documents are quite varied, they can have many variations in texture, as well as many regions that are texture-free (no-text).
In order to get a meaningful gradient of the reconstruction loss, we use a checkerboard texture which is kept consistent

across a training batch. However, any other texture is also a viable choice as long as it is kept consistent across all the
examples during training. This is done to avoid errors in areas of a document devoid of texture.

We use the available checkerboard textured images (Ic) in Doc3D [2] following the DewarpNet training procedure. Specif-
ically, during the training of global stitching network, GSNet, we unwarp Ic using the predicted backward map (B̂) and
ground-truth backward map (B) to obtain D̂ and D respectively. Similarly for the piece-wise unwarping network, PUNet
training Ici,j is unwarped using the predicted local backward map (B̂′

i,j) and ground-truth local backward map (B′
i,j) to obtain

D̂i,j and Di,j respectively. Where Ici,j denote the patches of the checkerboard image corresponding to the local backward
map (B′

i,j). A schematic diagram of the PUNet training is presented in figure 5.

5. Training details.
5.1. Training schedule

In this section, we provide step-by-step details about the training of our proposed approach.

• First, we separately train the shape network (SNet), the piece-wise unwarping network (PUNet), and the Global Stitch-
ing Network (GSNet).

The SNet is trained with tightly cropped images as input with variable padding size in the range of [15, 20] pixels. We
randomly replace the background and apply color jitter as training augmentations. We use Lc as the loss function to
train SNet.

For the PUNet training, we utilize the patches from the ground-truth 3D coordinate maps as input and train to regress
the local BMs. Initially, PUNet is trained until convergence with random patches extracted from the ground-truth 3D
coordinate maps. The input patch size is varied between [0.4,0.6] times of the image width. The loss defined as Lp is
used to train PUNet. During this round of training, we set β2 = 0.0.

For GSNet training, we use ground-truth local BM patches from each image as input and train GSNet to stitch them
with the loss function Ls.

All three networks are trained until convergence.

• In the second round of training, we jointly train the SNet and PUNet by using the loss function Lp with β2 = 0.5.
The SNet and PUNet weights are initialized using the separately trained models, respectively. We utilize the same
augmentations as the separate training. In this case, SNet- predicted 3D coordinate maps are used as PUNet. However,
instead of random patches, we use all the patches extracted from each 3D coordinate map as input to the PUNet.

• In the final round of training, GSNet is trained with fixed SNet and PUNet using Ls as the loss function. Instead of
ground-truth local BMs, predicted local BMs from PUNet are used as input to the GSNet. The SNet and PUNet models
are initialized using the best models of the previous round. The GSNet is initialized with the best model of the first
round of separate training.

5.2. Hyperparameters

SNet is trained with 256 × 256 sized images. For PUNet we set n = 2 and use 128 × 128 sized shape patches Ci,j as
input. PUNet outputs same-sized local BM predictions. Each local BM is then resized to 128/n and used as an input to CPM.
Outputs of CPM and inputs to the global stitching module are 128 × 128. We use 5 Residual Channel Attention Blocks [6]
to construct the feature pyramid network, and use 4 times feature reduction in the channel attention blocks. To train each
network we use the Adam [3] optimizer with initial learning rate of 1e− 5. The learning rate is halved if the validation error
doesn’t decrease in 5 consecutive epochs.

Loss weights. In the first round of training, α is linearly increased from 0.1 to 0.5 every 20 epochs, β1 = 0.03, β2 = 0.0 and
γ = 0.03. In the second round, β2 is set to 0.5. In the final round, γ is set to 0.03. We found that using higher values for β1
and γ results in artifacts on the unwarped image at test time.



Number of patches. Generally, patch sizes should have enough context to sufficiently infer and stitch the BM. We have
experimented with patches of 2x2 (50%), and 4x4 (25%) of the image width. For 4x4 patches, we noticed approximately a
5% higher unwarping L2 error on the validation set. Therefore we perform the experiments with 2x2 patches.

6. Discussion about DocProj [4] trained on Doc3D
In this section, we discuss DocProj [4] training on Doc3D [2] dataset. [4] is trained using synthetically warped documents

rendered using Blender [1]. Comparatively, Doc3d shapes are captured using a depth camera and rendered using Blender with
numerous document textures. Therefore, Doc3D provides more challenging and realistic deformation cases in the training set.
For a fair comparison with the proposed method, which is trained on Doc3D, we train DocProj [4] using Doc3D. However,
we had to relax the assumption in [4] that local patches do not contain any background. This assumption is not applicable
for Doc3D images because most of the paper shapes are moderately warped, and the camera view is not guaranteed to be
aligned with the document boundary. Under this relaxed condition, we could not achieve a reasonable model for DocProj
and replicate the pre-trained model’s performance. As per our model, DocProj trained on Doc3D yields 0.2667 MS-SSIM
and 25.34 LD. On the contrary, the pre-trained model released by the authors achieves 0.3832 MS-SSIM and 12.83 LD.

References
[1] Blender - a 3D modelling and rendering package. 7
[2] Sagnik Das, Ke Ma, Zhixin Shu, Dimitris Samaras, and Roy Shilkrot. DewarpNet: Single-image document unwarping with stacked

3D and 2D regression networks. In Int. Conf. Comput. Vis., 2019. 1, 4, 6, 7
[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun, editors,

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. 6

[4] Xiaoyu Li, Bo Zhang, Jing Liao, and Pedro V. Sander. Document Rectification and Illumination Correction using a Patch-based CNN.
ACM Transactions on Graphics (TOG), 2019. 1, 7

[5] R. Smith. An Overview of the Tesseract OCR Engine. In ICDAR. IEEE, 2007. 1
[6] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel

attention networks. In ECCV, 2018. 3, 6


